
Lattice Boltzmann Simulations of Two Linear Mi-
croswimmers Using the Immersed Boundary Method

D. Geyer1, S. Ziegler2, A. Sukhov1, M. Hubert2, A.-S. Smith2, O.
Aouane1, P. Malgaretti1 and J. Harting1,3*

1 Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszen-
trum Jülich, Cauerstraße 1, 91058 Erlangen, Germany
2PULS Group, Department of Physics, Interdisciplinary Center for Nanostructured
Films, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058
Erlangen, Germany
3 Department of Chemical and Biological Engineering and Department of Physics,
Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429 Nürn-
berg, Germany

Abstract. The performance of a single or the collection of microswimmers strongly
depends on the hydrodynamic coupling among their constituents and themselves. We
present a numerical study for a single and a pair of microswimmers based on lattice
Boltzmann method (LBM) simulations. Our numerical algorithm consists of two sepa-
rable parts. Lagrange polynomials provide a discretization of the microswimmers and
the lattice Boltzmann method captures the dynamics of the surrounding fluid. The
two components couple via an immersed boundary method. We present data for a
single swimmer system and our data also show the onset of collective effects and, in
particular, an overall velocity increment of clusters of swimmers.
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1 Introduction

In his seminal work, Purcell pointed out that the properties of microscopic objects placed
in fluids are significantly different from their macroscopic counterparts [1]. In particular,
Purcell showed that in order to swim in the low Reynolds number regime, a micrometric
swimmer has to move its parts in such a manner as to break the time inversion symme-
try. This fact led to the well-known “scallop theorem”, which states that in order to attain
self-propulsion in the low Reynolds number regime, at least two degrees of freedom are
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needed. Since then, numerous attempts have been done to elucidate the dynamics of
microswimmers by means of theoretical models [2–14], experimental setups [15–25] and
numerical simulations [26–32]. In particular, in Ref. [5] Najafi and Golestanian proposed
a theoretical model that precisely fulfills the requirement of Purcell. Indeed, they offered
a very simple swimmer composed of three aligned solid spherical particles suspended in
a viscous fluid and actuated internally by changing the distances between neighboring
particles. In a Newtonian fluid (see Refs. [33,34] for a theoretical and experimental exten-
sion of the problem in the case of the underdamped regime and non-Newtonian fluids),
the dynamics of such a swimmer is fully determined by the two degrees of freedom of the
swimmer, namely, the two distances among subsequent beads [6]. Later, a variation of
this swimmer has been proposed, where harmonic springs connect neighboring particles
and external forces drive the swimmer [3, 9]. Once actuated with a proper protocol, the
motion of the three beads of the swimmer results to be non-reciprocal and hence leads to
a net displacement.
Recently, the focus of theoretical research has shifted towards swimming in complex en-
vironments like channels [35, 36] or near fluid interfaces [31, 37], and the question of col-
lective swimmer dynamics has become of major interest. The present work aims at un-
derstanding the collective dynamics of several microswimmers [38,39]. For this purpose,
we consider a relatively simple situation of two linear microswimmers in different con-
figurations. Additionally, we exploit the suitability of the employed simulation method
for this task. The structure of the manuscript is as follows: In Sec. 2, we present the
theoretical model and the numerical implementation. In Sec. 3, we present our numeri-
cal results for a single and two microswimmers in diverse arrangements, which are then
discussed in Sec. 4. Finally, in Sec. 5 we provide some concluding remarks.

2 Model

We focus on investigating the behavior of a single and a pair of bead-spring microswim-
mers in a resting Newtonian fluid. Each microswimmer consists of three aligned equal
beads connected with springs which is a modification [9] of the model proposed by Na-
jafi and Golestanian [5]. The distances between the beads represent the two degrees of
freedom necessary to attain self-propulsion, as per the scallop theorem [1] and depicted
in Fig. 1. The microswimmer particles consist of rigid spherical shells filled with a New-
tonian fluid with the same viscosity and density as the external fluid. The fluid-particle
interactions are incorporated into the model through the immersed boundary method
(IBM) [40]. The flow field in the entire computational domain is computed using the
lattice Boltzmann method (LBM).

2.1 Fluid dynamics

In this study, we use the single relaxation time LBM with a Bhatnagar, Gross, Krook [41]
collision operator to solve for the flow field on an Eulerian frame in the weakly compress-
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Figure 1: Scheme of the linear, three bead swimmer connected with two springs. The motion direction vswim
depends on the interplay of the amplitudes and phases of external forces as detailed in [17]. Distances between
beads are measured from the respective centers of mass.

ible limit. The macroscopic fluid dynamics are recovered from the mesoscopic Boltzmann
equation as detailed in Ref. [42, 43]. The LBM consists of two steps, namely collision and
advection. We adopt a three-dimensional 19 velocities lattice (D3Q19) model and repre-
sent lengths in units of the lattice spacing ∆x and times in units of the integration time
step ∆t. The time evolution of the distribution functions fi(x,t) is obtained by solving the
discrete lattice Boltzmann equation in velocity space such that

fi(x+ci∆t,t+∆t)− fi(x,t)=−∆t
τ
[ fi(x,t)− f eq

i (x,t)], (2.1)

where fi describes the discrete probability of finding a fluid particle at position x and
time t moving with velocity ci for i=1,.. .,19. τ is the relaxation time or rate at which the
system relaxes toward a local equilibrium distribution function f eq

i corresponding to the
truncated expansion of the Maxwell-Boltzmann distribution for the velocities in an ideal
gas. f eq

i is expressed as

f eq
i =ωiρ

[
1+

ci ·ueq

c2
s

− (ueq ·ueq)

2c2
s

+
(ci ·ueq)2

2c4
s

]
, (2.2)

where ρ and ueq are the macroscopic number density and the equilibrium velocity, and
cs = 1/

√
3∆x/∆t is the lattice speed of sound. ωi are the lattice weights which read as

1/3, 1/18 and 1/36 for i=1, i=2...7, and i=8...19, respectively. ρ and ueq are obtained
from the moments of the particle distribution function fi such that

ρ=
19

∑
i=1

fi(x,t), and ρueq =
19

∑
i=1

fi(x,t)ci+τF, (2.3)

where F is the total force applied by the particles on the fluid. Note that since we are using
the Shan and Chen scheme [44] to include external forces on the fluid, the equilibrium
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velocity (ueq) used in Eq. (2.2) is different from the physical velocity of the fluid nodes
(u) which is defined as

ρu=
19

∑
i=1

fi(x,t)ci+
∆t
2

F. (2.4)

Finally, the dynamic viscosity µ=ν/ρ0 with ν being the kinematic viscosity, reads as

µ=ρ0c2
s

(
τ−∆t

2

)
, (2.5)

where ρ0 = mρ is the mass density with m here being the molecular mass of the fluid
particles. For convenience, ∆x, ∆t, and ρ0 are set to unity in this study.

2.2 Microswimmer model

We consider a force-driven microswimmer consisting of three beads of equal size with
two harmonic springs as depicted in Fig. 1. This is one of the simplest possible mi-
croswimmer models [3]. A driving force fd exerted on each bead of the microswimmer is
prescribed as [9]

fd
1(t)=A sin(ωt) x̂,

fd
2(t)=−fd

1(t)−fd
3(t) and (2.6)

fd
3(t)=B sin(ωt+α) x̂ with α∈ [−π,π].

Here A and B are non-negative amplitudes of the time-dependent driving forces fd
1(t)

and fd
3(t) applied along the x-axis to the outer beads at the frequency ω=2π/T. A crucial

condition for self-propelled objects is that the sum over all external driving forces equals
zero at all times. For simplicity, we assume that the two harmonic springs connecting
the beads are identical with a stiffness k and an equilibrium length Lspring which implies
that the total length of a single swimmer is ∼2Lspring. The spring forces on the beads are
given by

fs
1(t)=−k(|R1(t)−R2(t)|−Lspring)

R1(t)−R2(t)
|R1(t)−R2(t)|

,

fs
2(t)=−fs

1(t)−fs
3(t), (2.7)

fs
3(t)=−k(|R3(t)−R2(t)|−Lspring)

R3(t)−R2(t)
|R3(t)−R2(t)|

,

with Ri the position vector of bead i.
Our model is limited to small forces such that the assumptions for the Stokes regime re-
main valid. For this purpose, it is critical to differentiate between two Reynolds numbers

Reswim=
ρ0 ·|vswim|·2 Lspring

µ
and Rebead=

ρ0 ·|vmax fastest bead|·2 rbead

µ
, (2.8)
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and ensure that both Reswim and Rebead are small enough.
Each spherical bead in our microswimmer is generated from an icosahedron that is re-
fined recursively until obtaining a sufficiently smooth surface described by a triangular
mesh [45]. Our fluid-filled particles are modeled using a strain-hardening constitutive
law known as the Skalak strain energy [46, 47], which is written as

Wsk =
κs

4

∮
[I2

1 +2I1−2I2+CI2
2 ]dA, (2.9)

where the eigenvalues λ1, λ2 of the displacement tensor define deformation invariants
I1=λ2

1+λ2
2−2 and I2=λ2

1λ2
2−1, and C is a constant parameter controlling the extensibility

of the membrane. The area dilatation modulus κa is defined such as κa/κs =1+2C, with
κs being the shear elastic modulus. The deformations are evaluated using a linear finite
element method [48]. In addition to resistances to shear elasticity and area dilatation, our
particle membrane can withstand out of plane deformations (i.e. bending). The curvature
energy is accounted for via the Helfrich free energy

Wb =
κb

2

∮
[2H]2dA+κg

∮
KdA, (2.10)

where H= 1
2 ∑2

k=1 C̄k, and K=∏2
k=1 C̄i are the mean and Gaussian curvatures. C̄1 and C̄2 are

the two principal curvatures. κb and κg are the bending and Gaussian curvatures moduli.
The discretization of the bending energy follows the approach of Kantor and Nelson [49]
for flat triangulated meshes. The volume conservation of the capsule is enforced using a
penalty function reading as

Wv =
κv

2
[V−V0]2

V0
, (2.11)

where V0 is the reference volume of the stress-free particle, and κv is a constant parameter.
ri,j is the position of the j-th mesh node belonging to the i-th particle. The forces resulting
from bending, shear elasticity and the constraint on the volume are evaluated using the
principle of virtual work such that fpart

i,j (ri,j)=− ∂W
∂ri,j

with W=Wsk+Wb+Wv. The driving
and spring forces are distributed over the mesh nodes j of the corresponding particle such
that fα

i,j(ri,j)≡fα
i (ri,j)/Nv, with Nv being the total number of mesh nodes on particle i, and

the index i runs over the number of particles, here from 1 to 3. The superscript α stands
for either driving d or spring s. The total nodal force (ftot

i,j ) on particle i mesh node j, which
includes the contribution of the external forces, is defined as

ftot
i,j (ri,j)= fpart

i,j (ri,j)+fd
i,j(ri,j)+fs

i,j(ri,j). (2.12)

By choosing the appropriate values of κs, C, κb and κv, it is possible to work in the small
deformation regime where the particles are quasi-rigid. The chosen values are given in
Sec. 3.
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2.3 Fluid-Particle interaction

The immersed boundary method (IBM) is a fluid-structure coupling method that was first
introduced by Peskin in the early seventies of the last century to model the flow patterns
around heart valves [50]. The IBM involves both Eulerian and Lagrangian quantities.
The Eulerian variables exist on a Cartesian grid representing the fluid region while the
Lagrangian variables are based on a moving curvilinear mesh representing the interface.
A smoothed approximation of the Dirac delta function is used to transfer data from one
mesh to the other. The distribution of the particle nodal forces to the neighboring fluid
nodes reads as

F(x,t)=∑
j

∑
i

ftot
i,j ∆(x−ri,j), (2.13)

where ∑j is a sum over all the membrane nodes ri,j located within an interpolation range
from the fluid node x. At this point, we reason in terms of interactions between La-
grangian mesh nodes (not in terms of individual particles) and Eulerian fluid nodes. ∆
is the smoothed discrete Dirac delta function, and F(x,t) is the force density acting on
the fluid at the Eulerian node x(x1,x2,x3) due to the contributions of the membrane total
force (fpart), the external driving force (f̂d) and the spring force (f̂s). Similarly, the interpo-
lation of the velocity of the neighboring fluid nodes onto a membrane Lagrangian node
r(r1,r2,r3) is performed as

ṙi,j =∑
x

u(x)∆(x−ri,j), (2.14)

where ∑x is a sum over all the fluid nodes within an interpolation range from the mem-
brane node ri,j. ∆(x−ri,j) is then replaced by a two-point linear interpolation function as
detailed in [51,52]. Eqs. (2.13) and (2.14) describe the spreading of the interfacial forces to
the surrounding fluid nodes and the interpolation of the fluid velocity to the deformable
interface. The particle forces are included directly in the fluid node velocity using the
method proposed by Shan and Chen [44] as described in Eq. (2.3).
The IBM belongs to the class of the front-tracking methods where the sharp interface is
explicitly known through a set of Lagrangian marker points acting on the fluid via body
forces and moving with the same velocity as the ambient fluid, thus enforcing the no-slip
boundary condition. The deformation of the interface is governed by the chosen strain-
stress constitutive law and not by the IBM itself, making it a very popular method to
simulate biological fluid dynamics (e.g., blood flow) [53–57].

2.4 Analytical calculation

To compare the results of the lattice Boltzmann method, we make use of an analytical
framework [39] where the hydrodynamic interactions between the particles are calcu-
lated using either the Oseen or Rotne-Prager approximation [58]. The equation of motion



7

of the bead-spring system reads

Ṙi(t)=
1

6πµrbead
(fd

i (t)+fs
i (t))+∑

j ̸=i
T̂(Ri(t)−Rj(t))·(fd

j (t)+fs
j (t)), (2.15)

with particle indices i, j, the position Ri of particle i, the bead radius rbead and the spring
force fs

i on bead i. The tensor T̂ is given by either the Oseen tensor,

T̂(r)=
1

8πµ|r|

(
1̂+

r⊗r
r2

)
, (2.16)

or the Rotne-Prager tensor [30]

T̂(r)=
1

8πµ|r|

(
1̂+

r⊗r
r2

)
+

r2
bead

12πµ|r|3
(

1̂−3
r⊗r
r2

)
. (2.17)

Here, 1̂ denotes the 3×3 unit matrix and ⊗ the tensor product. The Oseen tensor as-
sumes point forces, and the Rotne-Prager tensor correctly describes the flow field around
a spherical particle. Eq. (2.17) also accounts for the correction to the interaction term aris-
ing as a consequence of Faxen’s law [63]. As a result, the prefactor of the second term
in Eq. (2.17) is r2

bead/(12πµ|r|3) [30]. The equation of motion (2.15) is then solved nu-
merically, and the swimmer velocities extracted from the particle trajectories are readily
compared to those obtained in the LBM simulations.

3 Results

We consider a fully periodic simulation domain of size 1024×256×256. Each microswim-
mer is formed by three beads of radius rbead=5 and connected with two springs with an
equilibrium length of Lspring=36 and a spring constant k=2·10−2. The amplitudes of the
time-dependent driving forces fd

1(t) and fd
3(t) are chosen as A=10−1 and B=5·10−3, re-

spectively. The period and the phase shift are set to T=2·104 and α=π/2. Since the size of
the beads is quite smaller than the total length of the microswimmer, then, as mentioned
earlier, we can approximate the total length of the swimmer by the sum of the lengths of
the two springs at equilibrium ∼2Lspring. We choose κs=5·10−2, κa=1, κb=1.25·10−3 and
κv = 1 such that the particles remain spherical during the swimmer motion. The initial
fluid density ρ0=1. A typical simulation run requires approximately 18000 CPU hours.

We calculate the swimmer velocity by the average position of the center of mass (cm)

vcm=
xcm(t0+T)−xcm(t0)

T
, with xcm=

1
3

3

∑
i = 1

xi. (3.1)
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Figure 2: Left: Velocity vref of a single microswimmer (reference swimmer) for different external driving force
periods T (see legend). Points stand for LBM data, solid (dashed) lines for analytical predictions based on the
Oseen [59] (Rotne-Prager [10]) tensor. Right: relative differences ∆vref= |vref−vtheo|/vtheo between numerical
data and analytical, Oseen (open points) and Rotne-Prager (solid points) predictions. The red lines report the
magnitude of the Reynolds number for the fastest bead (solid) and the swimmer in total (dashed) in the case
of T=20000 [l.u.]. The figure shows a better match between LBM data and Rotne-Pragner tensor than LBM
data and Oseen tensor. The Reynolds number of the fastest bead plays an essential role by comparing LBM,
Rotne-Prager and Oseen approaches. The higher external driving force period implies a decreased Reynolds
number, so the tensor approaches fit better to our simulation data.

3.1 Single microswimmer

First, we characterize the performance of a single microswimmer. Long-time simulations
over 50 swimming periods T show that the stationary swimming velocity is reached after
∼12 swimming periods. Accordingly, the average velocities are defined via Eq. (3.1) af-
ter such a transient period. In particular, we focus on the dependence of the swimmer’s
velocity on the dynamic viscosity of the fluid µ.
As expected, we retrieve a non-monotonous velocity dependence of the swimmer on µ,
as reported in Ref. [59], for diverse values of the period of the forcing T. In particular, the
velocity of a single swimmer obtained from the LB simulations compares well to analyt-
ical results (Fig. 2). To assess the origin of the quantitative mismatch between our simu-
lation and analytical results using the Oseen tensor, we look at the value of the Reynolds
number associated with the swimmer as a whole and with a single bead at its maximum
speed. Indeed, the Oseen approach of Ref. [59] assumes vanishing Reynolds number. In
contrast, the solid and dotted lines of Fig. 2 show that while the Reynolds number of the
swimmer is relatively small (Reswimm ∼ 10−4), the Reynolds number associated with the
beads at maximum speed is larger by two orders of magnitude (Rebead ∼ 10−2). Indeed,
recent works have shown that when the Reynolds number approaches unity, swimming
protocols that exploit inertia can become operational [33, 60]. However, the relative mis-
match between the Oseen predictions and the numerical results suggests that fluid inertia
may not be the only cause of such a discrepancy. An additional assumption of the ana-
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Figure 3: Averaged fluid velocity field for a single microswimmer for dynamic viscosity µ=1/6 and fluid density
ρ0 = 1. The image above shows the full box and the image below zooms on the microswimmer. The fluid
flow (black arrows) surrounding a single microswimmer (black beads) is shown whereby it is averaged over one
swimming period in the stationary case. The absolute values of the fluid velocity u (black arrows) are shown
by the different colors.
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ŷ, ẑ [l.u.]

256

1024

36 36 36 36 v

p1 p2

128

trailing swimmer leading swimmer

distance (p2 − p1)

Figure 4: Non-scaled sketch of the in-row configuration for two swimmers. The swimmers move along the
x-axis to the right. The leading swimmer swims in front of the trailing one. The initial distance between the
swimmers is measured as a difference of the center beads within the swimmers (p2−p1).

lytical model is that the fluid velocity adjusts instantaneously to the force, whereas in the
LBM simulations for a length L, such a time characterized by τ̄ = L2/ν is finite and it
is represented by the relaxation time τ in the BGK collision operator [41]. On the other
hand, also the analytical predictions are derived under approximations. In fact, the Os-
een approach assumes point particles and it does not properly account for the spherical
shape of the particles. Accordingly, we compare our data also with a more refined ap-
proach based on the Rotne-Prager tensor [10]. Interestingly, Fig. 2 shows a better agree-
ment between the LBM simulations and the predictions based on the Rotne-Prager as
with the Oseen model [59].
Finally, the analytical-numerical mismatch can be due to the periodic boundary condi-
tions that we implement in the LBM simulations compared to the unbound fluid consid-
ered in the analytical models. The periodic boundary conditions induce spurious interac-
tions of the swimmer with its image. Accordingly, to assess this issue, we have checked
that the self-interaction across the boundaries is lower than one percent, ruling it out as
a possible reason for the mismatch with the analytical results. This crucial point is also
valid for the case of two microswimmers considered below.
Fig. 3 shows the velocity field, averaged over a period of the external forces acting on
the swimmer. The velocity profile of this swimmer resembles that of a force dipole in a
far-field expansion.

3.2 Two aligned microswimmers

Next, we analyze the case of two identical aligned microswimmers, as sketched in Fig. 4.
In this case the crucial observable is the relative velocity increase/decrease

v∆ =
v−vref

vref
, (3.2)
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Figure 5: The velocity increase/decrease v∆ =(v−vref)/vref of two aligned microswimmers for different con-
figurations. The velocities are measured during the 12th swimming cycle (stationary case) with simulation
parameters given in Sec. 2. The collective motion of two swimmers increases the velocities of both swimmers
in certain configurations.

in comparison to the velocity vref of a single microswimmer. Due to the small velocities of
the swimmers, we assume their distance to stay approximately constant over one period.
Also the orientation does not change over several periods.
Fig. 5 shows v∆ as a function of the dynamic viscosity µ for different distances among
the centers of mass of the swimmers. As in the single swimmer case, we observe a de-
pendency of the velocity on the fluid’s dynamic viscosity. Interestingly, for a distance of
2 Lswim, both swimmers move faster than a single swimmer, with a velocity increase of up
to 36% for the leading swimmer (see Fig. 5). Since we observe that the leading swimmer
moves faster than the trailing one, such configurations are unstable, i.e., the trailing one
will be left behind until the distance between their centers of mass reaches ≳ 216 [l.u.]
= 3 Lswim. With increasing initial distances between the swimmers, the interaction effect
on the swimming velocity of both swimmers decays. For instance, the relative velocity
increase is below 5 % for a distance of 3 Lswim (21.6 bead diameters) in the range of pa-
rameters considered (see Fig. 5). The changes in the interaction behavior as a result of the
increasing swimmer distances are negligible in our simulations. Finally, Fig. 6 shows the
fluid velocity field, which is similar to that of a single swimmer shown in Fig. 3.

3.3 Two parallel microswimmers

Finally, we discuss the case of two parallel identical swimmers as shown in Fig. 7. As
expected by symmetry, we find that the two swimmers always have the same velocity
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Figure 6: Averaged fluid velocity field for two aligned microswimmers with dynamic viscosity µ=1/6 and fluid
density ρ0 =1. The image above shows the full box and the image below zooms on the microswimmers. The
distance between the center beads is 2.5 Lswim equivalent to 18 bead diameters. The fluid flow (black arrows)
surrounding the microswimmers (black beads) is shown whereby it is averaged over one swimming period in the
stationary case. The absolute values of the fluid velocity u (black arrows) are depicted by the different colors.
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the middle bead of swimmer 2 (p2).
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Figure 8: The velocity increase/decrease v∆=(v−vref)/vref of two microswimmer next to each other for different
configurations. The velocities are measured inside the stationary swimming cases, and collective motion implies
different velocity increase/decrease effects. The transition from decreasing to increasing velocities for larger
distances implies an optimal distance for maximal velocity increment.
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Figure 9: Averaged fluid velocity field for two microswimmers next to each other with dynamic viscosity µ=1/6
and fluid density ρ0=1. The image above shows the full box and the picture below zooms on the microswimmers.
The distance between the center beads is 1 Lswim equivalent to 7.2 bead diameter. The fluid flow (black arrows)
surrounding the microswimmers (black beads) is shown whereby it is averaged over one swimming period in the
stationary case. The absolute values of the fluid velocity u (black arrows) is shown by the different colors.
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for all the distances we investigated among them, i.e., all investigated configurations are
stationary on the time scales accessible to lattice Boltzmann simulations. However, theo-
retical work [39,61] has shown that parallel swimmers typically also experience sideways
interaction as well as rotation, which will in general break stationarity.
Moreover, similarly to the case of aligned swimmers, we observe a dependence of the
relative velocity change on the dynamic viscosity of the fluid, as shown in Fig. 8. Indeed,
there is a transition in Fig. 8 from decreased velocity to increased velocity between an ini-
tial distance of 1 Lspring and 3 Lspring which corresponds to 3.6 and 10.8 bead diameters.
This transition implies that swimmers that are close to each other mutually disturb, while
swimmers that are further away benefit from the presence of a nearby (yet not too close)
companion. Our data shows that for high viscosity, the velocity increase approaches a
constant. It is reasonable because Fig. 2 displays similar behaviour for the motion of a
single microswimmer. When the effect of resonance frequency gets less important, the
overall friction reduction is more important for the velocity increase. Finally, Fig. 9 rep-
resents the averaged fluid velocity field.

4 Discussion

Comparison of lattice Boltzmann simulations with theoretical approaches based on the
Oseen or Rotne-Pragner tensor is generally tricky. The theory holds in the Stokes limit,
in which the fluid velocity profile adjusts instantaneously to the change of position of
the beads. However, in our IBM+LBM+FEM simulations, momentum propagation over
a length L occurs on a finite time determined by τ̄ = L2/ν with ν= µ/ρ0 the kinematic
viscosity. Therefore, the velocity field of one microswimmer needs a finite amount of
time to attain its stationary profile and to affect the other beads’ motion. In our simula-
tions we have L≃36 [l.u.] = 3.6 [bead diameter] and ν∈ [0.1,1.2] (with ρ0 =1) and hence
we have τ̄ ∈ [1000,12000] time steps. Clearly, for larger values of the viscosity τ̄ ≃ 1000,
it is reasonable to have a time scale separation between τ̄ and the period of the force
T = 20000. In contrast, this is no longer the case for smaller viscosity values, and hence
larger deviations between numerical and analytical results are to be expected. We have
numerically solved the equation of motion for the swimmers using the Rotne-Prager ten-
sor where the delay time has been introduced as an additional parameter. Fig. 10 shows
the dependence of the velocity enhancement of the leading and trailing swimmer as a
function of the viscosity. In order to discuss the magnitude of the delay time, τdelay, we
have compared it with τ̄=L2/ν.
Some preliminary results for the finite relaxation time of the velocity field show an im-

provement in the analytical/numerical comparison. Here, the equation of motion in the
analytical calculations has been adapted to

Ṙi(t)=
1

6πµrbead
(fd

i (t)+fs
i (t))+∑

j ̸=i
T̂(Ri(t)−Rj(t−τdelay))·(fd

j (t−τdelay)+fs
j (t−τdelay)),

(4.1)
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Figure 10: Comparison of Rotne-Prager tensor with delay time, Eq. (4.1), and lattice Boltzmann simulations
for two microswimmers behind each other with distance two Lswim. The dynamic viscosity µ= 1/6, the fluid
density ρ0 = 1 and the length of swimmer is 7.2 bead diameter. On the left-hand side, the leading (triangle)
and trailing (circle) swimmers relative velocity, v∆, for diverse proposed delay times are shown. While the
black lines are the relative velocities of the leading (smooth) and trailing (dashed) swimmer as obtained from
LBM simulations. On the right-hand side, the ratio of the delay time τdelay and the momentum diffusion time

τ̄=L2/ν in dependence of the viscosity is shown.

with τdelay being the time delay. Assuming a time delay τdelay independent of the fluid
viscosity, we find that good agreement between the LBM and the analytical model can
be observed by properly choosing τdelay (left panel of Fig. 10). Also, the obtained delay
times are comparable to the time τ̄ that the fluid momentum takes to propagate over half
of the swimmer length.
The interaction effects of microswimmers can generally be separated in so-called pas-
sive effects due to the time-averaged flow field a swimmer is immersed in, and active
effects resulting from the interplay of the swimmer’s own swimming activity and the
time-dependent flow field at the swimmer’s position [61]. While some swimmers, such
as the squirmer, only experience passive effects [62], shape-changing swimmers such as
the bead-spring swimmer experience both types. In particular, bead-spring swimmers
will generally alter their swimming stroke as a consequence of the time-dependent flow
field they find themselves in, giving rise to active effects [39]. These active effects have
been reported to be particularly important as small swimmer separations [61], and thus
are expected to play an important role in our simulations. It is, in our case, therefore not
possible to directly relate the flow field produced by the swimmers (Figs. 6, 9) and the
interaction effects experienced by both.

5 Conclusions

We reported on LBM simulations of one and two bead-spring swimmers. As expected,
for the single swimmer, we found that its velocity is sensitive to the dynamic viscosity of
the fluid, µ, and it shows a non-monotonous dependence on µ as shown in Fig. 2. Our
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numerical results show a good quantitative agreement with the theoretical predictions
based on both the Oseen (Ref. [9, 59]) or Rotne-Pragner (Ref. [10, 39]) tensor as shown in
Fig. 2.
Next, we analyzed the collective motion of two microswimmers in the case in which
they are aligned or alongside. In the case of aligned swimmers, we found that when the
swimmers are close, the speedup due to hydrodynamic interactions of the leading swim-
mer is more significant than that of the trailing one hence leading to unstable clusters.
At variance, for the case of alongside swimmers, we found that all the distances among
their centers of mass are stationary so that swimmers can proceed together. In the case
of alongside swimmers, we found that when swimmers are too close, they slow down,
whereas they speed up at larger (yet finite) distances. Since when the separation distance
diverges we expect no speed up, our results suggest the existence of an optimal length at
which the speed up is maximized.
Finally, we have commented on the mismatch of the velocity profile as obtained from the
LBM simulations and the analytical calculations. Supported by some preliminary results,
we argue that this is due to the finite relaxation time of the fluid velocity in the LBM as
compared to the Stokes regime assumed in the analytical calculations.
While microswimmers such as squirmers or phoretic colloids experience only passive
interactions [62], shape-changing microswimmers as the three-bead swimmer are gener-
ally subject to both active and passive interactions [39,61]. Active interaction effects have
been reported to become particularly important for smaller swimmer separations [61], as
studied in this work. Consequently, the interaction behavior presented here will gener-
ally differ from that of swimmers of fixed shape, e.g. squirmers. Still, our results might
prove useful to understand better the interaction of shape-changing bacteria or algae
cells, such as, for instance, Chlamydomonas reinhardtii.
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[59] J. Pande and L. Merchant and T. Krüger and J. Harting and A.-S. Smith, Setting the pace

of microswimmers: when increasing viscosity speeds up self-propulsion, New Journal Of
Physics, 19 (2017), 053024.

[60] A. Choudhary and S. Paul and F. Rühle and H. Stark, How inertial lift affects the dynamics
of a microswimmer in Poiseuille flow, Communications Physics, 5 (2022), 14.

[61] C. M. Pooley and G. P. Alexander and J. M. Yeoman, Hydrodynamic interaction between
two swimmers at low Reynolds number, Physical Review Letters, 99 (2007), 228103.

[62] T. Ishikawa and M. Simmonds and T. Pedley, Hydrodynamic interaction of two swimming
model micro-organisms, Journal Of Fluid Mechanics, 568 (2006), 119-160.

[63] S. Kim and S. J. Karrila, Microhydrodynamics: principles and selected applications. Boston:
Butterworth-Heinemann, 1991.


	Introduction
	Model
	Fluid dynamics
	Microswimmer model
	Fluid-Particle interaction
	Analytical calculation

	Results
	Single microswimmer
	Two aligned microswimmers
	Two parallel microswimmers

	Discussion
	Conclusions

